Transport Phenomena and Droplet Formation During Pulsed Laser Interaction With Thin Films

نویسندگان

  • D. A. Willis
  • X. Xu
چکیده

This work investigates transport phenomena and mechanisms of droplet formation during a pulsed laser interaction with thin films. The surface of the target material is altered through material flow in the molten phase induced by a tightly focused laser energy flux. Such a process is useful for developing a laser-based micromachining technique. Experimental and numerical investigations of the laser-induced fluid flow and topography variations are carried out for a better understanding of the physical phenomena involved in the process. As with many machining techniques, debris is often generated during lasermaterial interaction. Experimental parametric studies are carried out to correlate the laser parameters with the topography and droplet formations. It is found that a narrow range of operation parameters and target conditions exists for ‘‘clean’’ structures to be fabricated. The stop action photography technique is employed to capture the surface topography variation and the melting development with a nanosecond time resolution and a micrometer spatial resolution. Numerical simulations of the laser-induced surface deformation are also performed to obtain the transient field variables and to track the deforming surface. The comparison between the numerical and experimental work shows that, within the energy intensity range investigated in this work, the surface deformation and droplet formation are attributed to the surface-tension-driven flow, and the recoil pressure effect plays an insignificant role in the surface topography development. @S0022-1481~00!02903-0#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Longitudinal Magneto-Optical Kerr Effect in Ce:YIG Thin Films Incorporating Gold Nanoparticles

We report an experimental study on optical and magneto-optical properties of Cesubstituted yttrium iron garnet thin films incorporating gold nanoparticles. Au nanoparticles were formed by heating Au thin film on cubic quartz and garnet substrate in vacuum chamber and a Ce:YIG layer was deposited on them by the aid of Pulsed laser deposition method. A large enhancement of the longitudinal Kerr e...

متن کامل

Temperature modeling of laser-irradiated azo-polymer thin films.

Azobenzene polymer thin films exhibit reversible surface mass transport when irradiated with a light intensity and/or polarization gradient, although the exact mechanism remains unknown. In order to address the role of thermal effects in the surface relief grating formation process peculiar to azo polymers, a cellular automaton simulation was developed to model heat flow in thin films undergoin...

متن کامل

Pulsed Laser Porosification of Silicon Thin Films

We present a new and simple laser-based process to porosify thin film silicon using a pulsed laser. During deposition, we incorporate gas atoms or molecules into the Si thin film. Pulsed laser radiation of wavelength λ = 532 nm heats up thin film Si beyond its melting point. Upon heating, gas atoms or molecules form nm-sized thermally expanding gas bubbles in the silicon melt, until they explos...

متن کامل

Tunable Schottky Barrier in Photovoltaic BiFeO3 Based Ferroelectric Composite Thin Films

We examine the photo-assisted polarization loop in a BiFeO3 thin film under UV light illumination. BiFeO3 thin film prepared by pulsed laser deposition method onto the BaTiO3 thin film and the polarization behavior has been measured under poling voltage. Our results show the engineered polarization due to controllable schottky barrier under inverse poling voltage. This control on schottky barri...

متن کامل

Surface-step-terrace-induced anomalous transport properties in highly epitaxial La0.67Ca0.33MnO3 thin films.

La0.67Ca0.33MnO3 thin films were epitaxially grown on miscut MgO(001) substrates by pulsed laser ablation. Electrical transport properties were studied by using an ultra high vacuum, four-probe STM system at different temperatures. Anomalous resistivity behavior and metal-insulator transition temperatures were found, both of which are highly dependent upon the miscut angle (1, 3, and 5°). These...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000